
PS1-Q1

Dylan Mavrides

February 14, 2017

How many subarrays of size 2 or less are encountered, on the average, when sorting
a random file of size N with quicksort? When we have an n-element subarray called,
the recurrence representing this situation is

AN =
2

N

∑
1≤j≤N

Aj−1

since it’s the same as the recurrences we’ve solved in class/question 1.14, but without
”adding anything” (as with the ”1 +” in the second one) until we hit the base case
(when size = n). Thus we have

NAN = 2
∑

1≤j≤N

Aj−1

NAN − (N − 1)AN−1 = 2AN−1

AN =
N + 1

N
AN−1.

Now, since we are looking for subarrays of size 2 or less, we will look for subarrays of
size 2, 1, and 0 separately and add the expected numbers.
Size 2:
Telescoping, we see that

AN =
N + 1

4
A3.

We note that for A0 and A1 we have 0 calls with subarrays size 2, for A2 we have 1
(the whole thing), and for A3 we have 2/3 expected (choosing the first or last element
gives a subarray of size 0 and size 2 called, one on either size, thus 1*1/3 + 1*1/3,
but the middle element gives two 1-element subarrays called = 0*1/3, thus 2/3 total).
(Note that since earlier in the problem we subtract the N - 1 case, we must use the
upper of two legitimate base cases. Normally N=2 would work, but we must use 3 for
it to work here for the stated reason.) Thus

AN =
2(N + 1)

3 ∗ 4
=

N + 1

6
.

1

Victor
Typewritten Text
5/5



Size 1:
Telescoping, we also see that

AN =
N + 1

3
A2.

We note that for A0 we have 0 calls with hi=lo, for A1 we have 1, for A2 we have
1 (one element is chosen as the pivot). (Note that since earlier in the problem we
subtract the N - 1 case, we must use the upper of two legitimate base cases. Normally
N=1 would work, but we must use 2 for it to work here for the stated reason.) Thus

AN =
N + 1

3
.

Size 0:
Telescoping, we also see that

AN =
N + 1

4
A3.

We note that for A0 we have 1 size-0 subarray called. For A1 we have 0 as well, since
Quick terminates after calling either a 1 or a 0 element array. For 2 we have 1, since
either element it chooses will result in one 0-element subarray called on one side, and
a 1-element subarray on the other. For 3 we have 4/3, because we have 2/3 for either
end element (1 for the size 0 subarray, 1 for the size 2 subarray), and 0 for the middle
element. Thus we have

AN =
4(N + 1)

3 ∗ 4
=

N + 1

3
.

Thus (except for some very small values of N, where our base cases were above them,
but in general) the expected number of calls to arrays less than or equal to size 2 is
N+1
3 + N+1

6 + N+1
3 = 5(N+1)

6 .

2

Victor
Typewritten Text
In the future please list out the small 
cases explicitly i.e. 1, 1, 3 




