
COS 488 Spring 2017

Homework 1: Exercise 1.16
Maryam Bahrani (mbahrani)

Dylan Mavrides

We will compute the expected number of times subarrays of size 0, 1, and 2 are encountered
separately and add the results up. Let these sequences be denoted by A, B and C respectively.

In all three case, the same recurrence holds for large enough N , differing only in the base cases:

AN =
2

N

N−1∑
j=0

Aj, A0 = 1, A1 = 0, A2 = 1

BN =
2

N

N−1∑
j=0

Bj, B0 = 0, B1 = 1, B2 = 1

CN =
2

N

N−1∑
j=0

Cj, C0 = 0, C1 = 0, C2 = 1, C3 =
2

3

The base case calculations are done by manual brute force, which should continue until current
index still satisfies the recursive expression. This ensures that we can subtract the previous index
from the current index up until that point and simplify recursively.

We outline the base case calculations for AN , noting that B and C are similar.
First, note that A0 = 1 by definition.
Furthermore, A1 = 0, since the recurrence stops when N = 1 without any calls to subarrays of

size zero; however, A1 does not satisfy the recurrence relation: A1 6= 2
1
A0 = 2.

When N = 2, we observe that an array of size 2 is always partitioned into a pivot, a subarray
of size 0, a subarray of size 1. That’s one encounter of a subarray of size 0. Therefore, A2 = 1.
Additionally, A2 does satisfy the recurrence relation: 2

2
(A0 + A1) = 1. This means that we can

stop our manual computation of base cases.
We can now solve each recurrence, using the same methods as Exercise 1.14:

1

Victor
Typewritten Text
5/5

Victor
Sticky Note
Unmarked set by Victor



AN =
2

N

N−1∑
j=0

Aj

NAN = 2
N−1∑
j=0

Aj

NAN − (N − 1)AN−1 = 2AN−1

NAN = (N + 1)AN−1

AN

N + 1
=

AN−1

N
= · · · = A2

3

AN =
N + 1

3
.

The calculations for B are identical, and we have BN = N+1
3

.
The case of C reduces to

CN

N + 1
=

CN−1

N
= · · · = C3

4
=

1

6

CN =
N + 1

6
.

In total, the number of calls to subarrays of size at most 2 is therefore N+1
3

+ N+1
3

+ N+1
6

, i.e.
5(N+1)

6
.

Finally, we can make sure that this makes sense by observing that the number of times subarrays
of size k > 0 are encountered is given by N+1

(k+1)(k+2)
2

, where the denominator is the (k + 1)th

triangular number. Summing up over all none-zero k, and adding 1 for the initial call to an array
of size N , the total number of calls is given by

1 +
N−1∑
k=1

N + 1
(k+1)(k+2)

2

= 1 + 2(N + 1)
N−1∑
k=1

1

(k + 1)(k + 2)

= 1 + 2(N + 1)

[
N−1∑
k=0

1

(k + 1)(k + 2)
− 1

2

]

= 1 + 2(N + 1)

[
N

N + 1
− 1

2

]
= 1 + 2N − (N + 1) = N.

To get from the second line to the third, we have used the following identity (you can see solution
to exercise 1.14 for an inductive proof of this):

∑N
k=1

1
k(k+1)

= N
N+1

.
By linearity of expectation, we expected the sum above to equal the expected number of calls

to quicksort on non-empty subarrays computed in Exercise 1.14, which is indeed the case.

2




