COS 488 - Homework 1 - Question 2

5/5

For all $N \ge 0$, let T_N be the expected value of the number of times that quicksort is called with $hi - lo \in \{-1, 0, 1\}$ when sorting N items, so that $T_0 = 1$, $T_1 = 1$, $T_2 = 3$, and for all N > 2,

Matt Tyler

$$T_N = \frac{1}{N} \sum_{k=0}^{N-1} (T_k + T_{N-1-k})$$

since $T_k + T_{N-1-k}$ is the expected value of the number of times that quicksort is called with $hi - lo \in \{-1, 0, 1\}$ when sorting N items assuming the partitioning element is the k^{th} smallest, which has a probability of $\frac{1}{N}$ for each $0 \le k \le N - 1$.

Therefore, $T_3 = \frac{10}{3}$, and by applying the symmetry of the sum and repeating the same steps as in the solution to Question 1, we have the following sequence of equalities for all N > 3:

$$T_{N} = \frac{1}{N} \sum_{k=0}^{N-1} (T_{k} + T_{N-1-1})$$
$$T_{N} = \frac{2}{N} \sum_{k=0}^{N-1} T_{k}$$
$$NT_{N} = 2 \sum_{k=0}^{N-1} T_{k}$$
$$NT_{N} - (N-1)T_{N-1} = 2T_{N-1}$$
$$NT_{N} = (N+1)T_{N-1}$$
$$\frac{T_{N}}{N+1} = \frac{T_{N-1}}{N} = \dots = \frac{T_{3}}{4} = \frac{5}{6}$$

Therefore, $T_0 = 1$, $T_1 = 1$, $T_2 = 3$, and $T_N = \frac{5(N+1)}{6}$ for all N > 2.