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Let f(n) be the number of ways to write n as a composition (ordered sum) of odd positive
integers.

(a) Compute f(n) for n = 1, 2, 3, 4, 5.

(b) Write down a combinatorial construction for the class of compositions composed of
odd positive integers.

(c) Translate the combinatorial construction to a generating function. Write the generating
function in a closed form (without any infinite sums).

(d) Compute the asymptotics of f(n).



(a) 1 can be written only as 1; 2 as 1+1; 3 as 3 or 1+1+1; 4 as 3+1, 1+3, or 1+1+1+1;
and 5 as 5, 3 + 1 + 1, 1 + 3 + 1, 1 + 1 + 3, or 1 + 1 + 1 + 1 + 1. Thus, we have f(1) = 1,
f(2) = 1, f(3) = 2, f(4) = 3, and f(5) = 5.

(b) Let C be the class of compositions composed of odd positive integers. We have C =
SEQ(Z + Z3 + Z5 + . . . ).

(c) This translates immediately to
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. Letting f(z) = 1− z2 and g(z) = 1− z − z2, we find that
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