COS 488: AC week 4 Q1

Dylan Mavrides

We first evaluate the number of strings that do not contain the pattern 0000000001. If we slide it left over itself, we see that it has autocorrelation polynomial $c_p(z) = 1$. We then apply the formula on slide 17 of lecture AC05:

$$S_p(z) = \frac{c_p(z)}{z^p + (1 - 2z)c_p(z)} = \frac{1}{z^{10} - 2z + 1}$$

We then look for the dominant root of the denominator. There are roots at 1, \approx .500493, and some complex values, thus we use the root that is about .500493. The residue is

$$h_{-1} = -\frac{f(z)}{g'(z)} = -\frac{1}{10z^9 - 2}|_{z \approx .500493} \approx .504975$$

Thus we have that the coefficients are

$$[z^N]S_{000000001}(z) \sim (.504975)/(.500493)(1/.500493)^N \approx 1.00896 * (1.99803)^N$$

We now evaluate the number of strings that do not contain the pattern 0101010101. If we slide it left over itself, we see that it has autocorrelation polynomial $c_p(z) = 1 + z^2 + z^4 + z^6 + z^8$.

We then apply the formula on slide 17 of lecture AC05:

$$S_p(z) = \frac{c_p(z)}{z^p + (1 - 2z)c_p(z)} = \frac{1 + z^2 + z^4 + z^6 + z^8}{z^{10} + (1 - 2z)(1 + z^2 + z^4 + z^6 + z^8)}$$
$$= \frac{1 + z^2 + z^4 + z^6 + z^8}{z^{10} - 2z^9 + z^8 - 2z^7 + z^6 - 2z^5 + z^4 - 2z^3 + z^2 - 2z + 1}$$

We find the dominant root of the denominator: It has smallest real root at \approx .500369. To find the residue, we take the derivative of the bottom as above, then plug in our root, giving $h_{-1} = .50347$ Thus we have that the coefficients are

$$[z^N]S_{0101010101}(z) \sim (.50347/500369)(1/.500369)^N \approx 1.006197 * (1.998525)^N$$