Analytic Combinatorics Web Exercise VI.2

Eric Neyman 5/4/2017

5/5

Let T be the class of trees where every node has 0, 2, or 3 children. A tree in T is a root together with a sequence of 0, 2, or 3 trees in T. (We define T to not include the empty tree to make this construction work; it does not affect the asymptotics.) Thus, we have $T = \cdot \times SEQ_{0,2,3}(T)$. This translates to the OGF equation $T(z) = z(1 + T(z)^2 + T(z)^3)$. Then $\phi(u)$ as defined on Slide 40 is $1 + u^2 + u^3$, which has nonnegative coefficients and does not have the form $\phi_0 + \phi_1 u$ for constants ϕ_0, ϕ_1 ; is analytic at 0 with $\phi(0) \neq 0$; and the equation $\phi(\lambda) = \lambda \phi'(\lambda)$ has a unique positive real root $\lambda \approx 0.657$. (The equation for λ is $1 + \lambda^2 + \lambda^3 = \lambda(2\lambda + 3\lambda^2)$, which has the stated unique positive real root.) Therefore, T is an invertible tree class. Applying the formula on Slide 41, we have

$$[z^{N}]T(z) \sim \frac{1}{\sqrt{2\pi \frac{2+6\lambda}{1+\lambda^{2}+\lambda^{3}}}} (2\lambda+3\lambda^{2})^{N} N^{\frac{-3}{2}} \approx \boxed{0.214 \cdot 2.611^{N} \cdot N^{\frac{-3}{2}}}$$

Under an efficient way of mapping these trees to bit strings, one can represent a tree of size N in approximately $\lg([z^N]T(z)) \approx N \lg(2.611) - \frac{3}{2} \lg(N) \approx \boxed{1.384N - 1.5 \lg(N)}$ bits.