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(Flajolet 69), so we can write S(z) = ®(z, 5(2)), where ®(z,w) = z + % We verify that
S is a smooth implicit-function tree-like class by using the conditions in Definition VII.4
(Flajolet 467).

We can write ®(z,w) = z +w? +w?® +. ... Clearly the first condition is satisfied: take R
to be anything (say 10) and S = 1; then ®(z,w) converges when |z| < R and |w| < S. The
second condition is also satisfied: all coefficients are nonnegative; the (0, 0)-coefficient is 0;
the (0, 1)-coefficient is 0 # 1; and the (0, 2)-coefficient is 1 > 0. Finally, the third condition

is satisfied: take r =3 —2v/2 and s =1 — ‘/75 < 1. Then

Let S be the class of bracketings. We have the generating function S(z) = z +
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Also, we have
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Therefore, S is indeed a smooth implicit-function tree-like class. We may therefore use the
theorem on Slide 41. We have
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Noting that % =_1 _ =34+ 2\/5, we have
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