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Let S be the class of bracketings. We have the generating function S(z) = z + S(z)2

1−S(z)

(Flajolet 69), so we can write S(z) = Φ(z, S(z)), where Φ(z, w) = z + w2

1−w . We verify that
S is a smooth implicit-function tree-like class by using the conditions in Definition VII.4
(Flajolet 467).

We can write Φ(z, w) = z+w2 +w3 + . . . . Clearly the first condition is satisfied: take R
to be anything (say 10) and S = 1; then Φ(z, w) converges when |z| < R and |w| < S. The
second condition is also satisfied: all coefficients are nonnegative; the (0, 0)-coefficient is 0;
the (0, 1)-coefficient is 0 6= 1; and the (0, 2)-coefficient is 1 > 0. Finally, the third condition
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Also, we have
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,

so
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Therefore, S is indeed a smooth implicit-function tree-like class. We may therefore use the
theorem on Slide 41. We have

Φww(r, s) =
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Noting that 1
r

= 1
3−2
√
2

= 3 + 2
√

2, we have
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