COS 488 - Homework 11 - Question & Answer

Matt Tyler

1 Question

1. Suppose $\phi(u)$ has non-negative coefficients, is not of the form $\phi_0 + \phi_1 u$, is analytic at 0 with $\phi(0) \neq 0$ and radius of convergence R, and has one positive real root $\lambda < R$ of the equation $\phi(\lambda) = \lambda \phi'(\lambda)$. Then, show that

$$[u^{n-1}]\phi(u)^n \sim \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{\phi(\lambda)}{\phi''(\lambda)}} \phi'(\lambda)^n.$$

- 2. Use part 1 to show each of the following asymptotic equivalences:
 - (a) Stirling's approximation:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

(b) For fixed integral k > 1,

$$\binom{kn}{n} \sim \frac{1}{\sqrt{2\pi n}} \sqrt{1 + \frac{1}{k-1}} \left(k \left(1 + \frac{1}{k-1} \right)^{k-1} \right)^n.$$

(c) If Δ_n is the number of ways to partition $\{1, \ldots, n-1\}$ into n parts, each of which has size 0, 1, or 2, then

$$\Delta_n \sim \frac{3^n}{\sqrt{4\pi n/3}}.$$

2 Answer

1. Let f(z) satisfy $f(z) = z\phi(f(z))$. We will calculate $n[z^n]f(z)$ in two different ways. Firstly, if $g(u) = \frac{u}{\phi(u)}$, then g(f(z)) = z, g(0) = 0, and $g'(0) \neq 0$, so by Lagrange inversion, we have

$$n[z^{n}]f(z) = [u^{n-1}](u)g(u)^{n} = [u^{n-1}]\phi(u)^{n}.$$

Secondly, f(z) represents a λ -invertible simple variety of trees, so by the transfer theorem for invertible tree classes, we have

$$n[z^{n}]f(z) \sim n \frac{1}{\sqrt{2\pi}} \sqrt{\frac{\phi(\lambda)}{\phi''(\lambda)}} \phi'(\lambda)^{n} n^{-3/2} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{\phi(\lambda)}{\phi''(\lambda)}} \phi'(\lambda)^{n}.$$

Equating these two expressions for $n[z^n]f(z)$ gives the desired result.

2. (a) Let $\phi(u) = e^u$, so that $\phi(u)$ satisfies the conditions in part 1 with $\lambda = 1$. Then, since $[u^{n-1}](e^u)^n = \frac{n^{n-1}}{(n-1)!}$, the formula from part 1 gives

$$\frac{n^{n-1}}{(n-1)!} \sim \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{e}{e}} e^n = \frac{e^n}{\sqrt{2\pi n}}.$$

By rearranging this formula, we get Stirling's approximation.

(b) Let $\phi(u) = (1+u)^k$, so that $\phi(u)$ satisfies the conditions in part 1 with $\lambda = \frac{1}{k-1}$. Then, we have

$$\binom{kn}{n} \sim (k-1)\binom{kn}{n-1} = (k-1)[u^{n-1}]\phi(u)^n$$

so by the formula in part 1, we have

$$\binom{kn}{n} \sim (k-1) \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{\left(1 + \frac{1}{k-1}\right)^k}{k(k-1)\left(1 + \frac{1}{k-1}\right)^{k-2}} \left(k\left(1 + \frac{1}{k-1}\right)^{k-1}\right)^n}$$
$$= \frac{1}{\sqrt{2\pi n}} \sqrt{1 + \frac{1}{k-1}} \left(k\left(1 + \frac{1}{k-1}\right)^{k-1}\right)^n.$$

(c) The number of ways to partition $\{1, \ldots, a\}$ into b parts, each of which has size in the set S is

$$[z^a] \left(\sum_{s \in S} z^s\right)^b.$$

In particular, if $\phi(u) = 1 + u + u^2$, then $\Delta_n = [u^{n-1}]\phi(u)^n$. Since $\phi(u)$ satisfies the conditions in part 1 with $\lambda = 1$, the formula in part 1 gives

$$\Delta_n \sim \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{3}{2}} 3^n = \frac{3^n}{\sqrt{4\pi n/3}}$$