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Analytic Combinatorics Homework 2 Problem 3

Eric Neyman
2/15/2017

Let A(z) be the generating function for the sequence. The recurrence relation gives us
A(z) = 32A(2) — 322A(z) + 23 A(z) + 22, where 2? is necessary because as — 3a; + 3ag = 1.
We thus have

(z —1)*A(z) = =2
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Now, we have 1T1z =1+ 2+ 2%+ .... Taking the second derivative of both sides, we have
—92.143-2044-324+... = (k+1)(k+2)2
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Therefore, we have
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(where the last step comes from @ = % = 0). Therefore, we have
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If instead we let a; = 1, the equation for our generating function changes so that the extra
terms are z — 222 (we get z because a; — 3ag = 1 and —22?% because as — 3a; + 3ag = —2).
Thus we have

z — 222
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Again we may make the sums start with 0 because % =1-0=0(—1) =2, so we have
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Therefore, we now have
0 - n(3 —n)
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