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Begin with the generating function for the catalan numbers:
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take the derivative:
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(Thus making the terms of the sequence of catalan numbers go from 1
N+12NzN to

1
N+12NzN+1 to 2NzN+1.)
Now if we multiply each term of the sequence by 1/4n we get the generating function:
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1−z , (with terms 2NzN+1/4N which we can convolve with the generating function

for the harmonic sequence (not series), ln 1
1−z , giving the desired generating function,
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(Worked with Maryam B.) This was my original solution, which I submitted before the
deadline at the time of the other problems. I had originally tried to solve the problem
using the hint, and got an ugly sum/product because I had made a small algebra
error. Then this way seemed to make more sense after watching the catalan-numbers
generating-function lectures (since we just have the two equations and convolve them).
Unfortunately, right after 12am, Matt Tyler and I found a much much nicer solution
(this is perhaps the nicest solution I’ve ever seen to a problem on a pset). So here it
is, I know this is a bit past the deadline because I had to type it up and decide what
to do, since the lateness policy isn’t posted nor made clear etc., so if you don’t accept
small-deltas-past submissions, please just grade the above solution. If it’s fine, the
below one is much nicer. Thank you.
Using Taylor’s theorem we see that:
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and thus if we take the derivative with respect to a, we get:
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The desired generating function. If we apply the derivative to the terms above, we
see that for a coefficient of zn of the final generating function, we have:
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and now we evaluate this at a = 1/2, as per the question:∏n−1
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Just a beautiful solution. And it highlights an interesting identity, setting the first
and second solutions equal we see that:
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a result that looks like it should be easy to find, but is very difficult to find without
solving this question the two different ways.
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