Homework 2: Exercise 3.20

Maryam Bahrani (mbahrani)

5/5

a) We will solve the recurrence with initial conditions $a_0 = 0, a_1 = 0, a_2 = 1$ and

$$a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3}$$
 for $n > 2$

Hypothesizing that a linear recurrence of this form has a solution asymptotically growing as z^n , we have the following equation:

$z^{3} = 3z^{2} - 3z + 1$ $(z - 1)^{3} = 1$	In the future I'd prefer if you were a
	bit more explicit as to why the
	solution must be in this form.
z = 1.	

Since the generating function has a single root with multiplicity 3, the closed form expression has the following form: $a_n = (A + Bn + Cn^2)1^n$. The initial conditions can be used to solve for the constants A, B, and C:

$$a_0 = A = 0$$

$$a_1 = A + B + C = 0$$

$$a_2 = A + 2B + 4C = 1$$

$$\implies A = 0, B = -\frac{1}{2}, C = \frac{1}{2}$$

The closed form is thus given by

$$a_n = \frac{1}{2}n^2 - \frac{1}{2}n = \binom{n}{2}.$$

Finally, let us confirm inductively that this expression holds for n > 2:

$$a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3} = 3\binom{n-1}{2} - 3\binom{n-2}{2} + \binom{n-3}{2} = \binom{n}{2}.$$

b) We will now solve the recurrence with a different set of initial conditions, $a_0 = 0, a_1 = 1, a_2 = 1$. Solving for the constants A, B, and C again, we have

$$a_0 = A = 0$$

 $a_1 = A + B + C = 1$
 $a_2 = A + 2B + 4C = 1$
 $\implies A = 0, B = \frac{3}{2}, C = -\frac{1}{2}.$

The recurrence can thus be specified by the following closed form:

$$a_n = -\frac{n(n-3)}{2}.$$

For n > 2, we can confirm via induction that

$$a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3}$$

= $-3\frac{(n-1)(n-4)}{2} + 3\frac{(n-2)(n-5)}{2} - \frac{(n-3)(n-6)}{2}$
= $-\frac{n(n-3)}{2}$.