
David Luo 
Exercise 4.71 
 
First, we must rewrite the inner term into something we can work with, using Stirling’s: 
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Then, we can use the Laplace method on the summation and our approximated inner term to 
show that the problem  is indeed equal to :(N)P √πN/2  
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e−x /22 = √πN/2 +O  
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Typewritten Text
-1pt for not explicitly mentioning the 1 to k_0 vs. k_0 to N split 

aarslan
Typewritten Text
-1pt for using ~ here--need to be more precise than that else you just get P(N) ~ sqrt(pi*N/2), which is weaker than P(N) = sqrt(pi*N/2) + O(1)
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Typewritten Text
not sure why you dropped the k^3/N^2 term (it dominates the k^4/N^3 term), you should have O(k^3/N^2) instead of O(k^4/N^3). The bigger problem is that this only holds for k < k_0 for k_0 sufficiently small, but -0pt b/c I already took off for not talking about which k_0 in the Laplace method makes both sides work out 
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