Analytic Combinatorics Homework 3 Problem 4

Eric Neyman 2/21/2017

We have

$$\frac{(N-k)^k(N-k)!}{N!} = \exp(k\ln(N-k) + \ln((N-k)!) - \ln(N!))$$

$$= \exp(k\ln(N-k) + (N-k)\ln(N-k) - (N-k) + \ln\sqrt{2\pi(N-k)})$$

$$= \exp\left(\left(N+\frac{1}{2}\right)\ln(N-k) - \left(N+\frac{1}{2}\right)\ln(N) + k + O\left(\frac{1}{N}\right)\right)$$

$$= \exp\left(\left(N+\frac{1}{2}\right)\ln\left(1-\frac{k}{N}\right) + k + O\left(\frac{1}{N}\right)\right)$$

$$= \exp\left(\left(k-\frac{k}{2N} - \frac{k^2}{N} + k + O\left(\frac{k^3}{N^2}\right) + O\left(\frac{1}{N}\right)\right)$$

$$= \exp\left(-\frac{k}{2N} - \frac{k^2}{2N} + O\left(\frac{k^3}{N^2}\right) + O\left(\frac{1}{N}\right)\right)$$

$$= e^{-\frac{k^2-k}{2N}} + O\left(\frac{k^3}{N^2}\right) + O\left(\frac{1}{N}\right)$$

$$= e^{-\frac{k^2-k}{2N}} + O\left(\frac{k^3}{N^2}\right) + O\left(\frac{1}{N}\right).$$

Let us split the sum we wish to approximate into two sums, where $k_0 = N^{1/2}$.

$$\sum_{k=0}^{N-1} \frac{(N-k)^k (N-k)!}{N!} = \sum_{k=0}^{k_0-1} \frac{(N-k)^k (N-k)!}{N!} + \sum_{k=k_0}^{N-1} \frac{(N-k)^k (N-k)!}{N!}.$$

We now show that the tail (second sum) is O(1). The terms are products of them form

$$\frac{N-k}{N-k+1} \cdot \frac{N-k}{N-k+2} \cdot \dots \cdot \frac{N-k}{N}.$$

This is clearly larger for larger values of k, so the smallest term in the tail is when $k = k_0$, in which case we can bound the term (by ignoring the first half of the terms and noting that the last half are at most $\frac{N-k_0}{N-\frac{k_0}{2}}$) by

$$\left(\frac{N-k_0}{N-\frac{k_0}{2}}\right)^{k_0/2} = \left(1-\frac{1}{\frac{2N}{k_0}-1}\right)^{k_0/2} < \left(1-\frac{1}{\frac{2N}{k_0}}\right)^{k_0/2} = \left(1-\frac{1}{2k_0}\right)^{k_0/2} = O(1),$$

since this expression converges to $e^{1/4}$. Meanwhile the first sum is a sum of terms of the form $e^{\frac{-k^2-k}{2N}} + O\left(\frac{k^3}{N^2}\right) + O\left(\frac{1}{N}\right)$. Since $k < \sqrt{N}$, the second big-O gives us \sqrt{N} terms of size at most proportional to $N^{-1/2}$, so the sum of that part is O(1). The sum of the second big-O is $O(N^{-1/2})$ so we may ignore it. We are left with

$$\sum_{k=0}^{k_0-1} e^{\frac{-k^2-k}{2N}} \cdot \frac{-0.5\text{pt, splitting doesn't work for k_0}}{N^{1/2}, \text{ you flipped inequality sign (most people just cited results from book for what it's worth)}$$

We may instead consider $e^{\frac{-k^2}{2N}}$, for changing the limits of the sum by 1 would produce a change in the value of $-k^2 - k$ of the same order as ignoring the linear term. Thus, this sum is, as in the *Q*-function, approximable by an integral, giving us

$$\sum_{k=0}^{k_0-1} e^{\frac{-k^2-k}{2N}} = O(1) + \sqrt{N} \int_0^\infty e^{\frac{-x^2}{2}} dx = \sqrt{\frac{\pi N}{2}} + O(1).$$

Combining this with the O(1) we obtained from other parts of the summation still leaves us with $\sqrt{\frac{\pi N}{2}} + O(1)$, as desired.