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We have
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Let us split the sum we wish to approximate into two sums, where k0 = N1/2.

N−1∑
k=0

(N − k)k(N − k)!

N !
=

k0−1∑
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(N − k)k(N − k)!

N !
+
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(N − k)k(N − k)!

N !
.

We now show that the tail (second sum) is O(1). The terms are products of them form

N − k
N − k + 1

· N − k
N − k + 2

· . . . · N − k
N

.

This is clearly larger for larger values of k, so the smallest term in the tail is when k = k0,
in which case we can bound the term (by ignoring the first half of the terms and noting that
the last half are at most N−k0

N− k0
2

) by(
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=
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=
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since this expression converges to e1/4. Meanwhile the first sum is a sum of terms of the form

e
−k2−k

2N + O
(
k3

N2

)
+ O

(
1
N

)
. Since k <

√
N , the second big-O gives us

√
N terms of size at

most proportional to N−1/2, so the sum of that part is O(1). The sum of the second big-O
is O(N−1/2) so we may ignore it. We are left with

k0−1∑
k=0

e
−k2−k

2N .
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We may instead consider e
−k2

2N , for changing the limits of the sum by 1 would produce a
change in the value of −k2−k of the same order as ignoring the linear term. Thus, this sum
is, as in the Q-function, approximable by an integral, giving us

k0−1∑
k=0

e
−k2−k

2N = O(1) +
√
N

∫ ∞
0

e
−x2

2 dx =

√
πN

2
+O(1).

Combining this with the O(1) we obtained from other parts of the summation still leaves us

with
√

πN
2

+O(1), as desired.




