Homework 3: Exercise 4.9

Maryam Bahrani (mbahrani)

Dylan Mavrides

5/5

If $\alpha < \beta$, we will show that $\frac{\alpha^N}{\beta^N}$ is exponentially small. Suppose, on the contrary, that there exists M > 0 such that $\frac{\alpha^N}{\beta^N} \ge N^{-M}$. Taking log base β/α of both sides, we have

$$\left(\frac{\alpha}{\beta}\right)^N \ge N^{-M}$$
$$\left(\frac{\beta}{\alpha}\right)^N \le N^M$$
$$N \le M \log(N)$$
$$\frac{N}{\log N} \le M.$$

However, since the left-hand-side goes to infinity in the limit, so there exists some N_0 such that for $N > N_0$, $\frac{N}{\log N} \ge M$, which is a contradiction. Therefore, there is no fixed M that makes $\frac{\alpha^N}{\beta^N} \ge N^{-M}$ hold.

When $\alpha = 1.1$ and $\beta = 1.2$, approximating $\alpha^N + \beta^N$ as β^N gives the following error terms:

- When N = 10:
 - Absolute error: $\alpha^{N} + \beta^{N} \beta^{N} = \alpha^{N} = 1.1^{10} = 2.59374.$
 - Exact value: $\alpha^N + \beta^N = 1.1^{10} + 1.2^{10} = 8.78548.$
 - Relative error: $\frac{2.59374}{8.78548} = 0.29523.$
- When N = 100:
 - Absolute error: $\alpha^N + \beta^N \beta^N = \alpha^N = 1.1^{100} = 13780.61234.$
 - Exact value: $\alpha^N + \beta^N = 1.1^{100} + 1.2^{100} = 82831755.13435.$
 - Relative error: $\frac{13780.61234}{82831755.13435} = 0.0001663687.$

The error seems negligible for large N, as expected.