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First, we will find a simplified form for each term of the sum:
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Note that this is asymptotically identical to the Ramanujan Q-distribution, as outlined in Slide 33
of lecture 4. Therefore, summing up the function over all &, the same analysis outlined in Slide 38
of Lecture 4 goes through, giving

P(N)= ) (V= K" (N — B)! ~ Q(N) ~ /TN/2.
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More specifically, since we can tolerate constant error, changing the range of the sum from
0 < k< Ntl <k < N does not change the asymptotics. Similar to lecture, we can use
Laplace method and split up the sum into two parts, for k < ko = o(n?/3) and the tail, which is
exponentially small and thus negligible. Euler-Maclaurin summation theorem then allows us to
express the sum as an integral of points with step 1/ VN, so

P(N) ~ \/N/Oo e F dr — \/7NJ2.





