5/5

AofA Exercise 4.9 If $\alpha < \beta$, show that α^n is exponentially small relative to β^N . For $\beta = 1.2$ and $\alpha = 1.1$, find the absolute and the relative errors when $\alpha^N + \beta^N$ is approximated by β^N , for N = 10 and N = 100.

Solution. Suppose $\alpha < \beta$. We need to show that $\frac{\alpha^N}{\beta^N} = O(N^{-M})$ for all M > 0. We take as known the result that e^{-N} is exponentially small. Let $c = \ln \frac{\beta}{\alpha}$, and note that c > 0 since $\frac{\beta}{\alpha} > 1$. Then for all M > 0, we have:

$$\frac{\alpha^N}{\beta^N} = \left(\frac{\alpha}{\beta}\right)^N = e^{N\ln\frac{\alpha}{\beta}} = e^{-cN} = (e^{-N})^c = \left(O(N^{-\frac{M}{c}})\right)^c = O(N^{-M}).$$

Therefore α^N is exponentially small relative to β^N .

As an example, take $\alpha = 1.1$ and $\beta = 1.2$.

When N=10, we have $\alpha^N+\beta^N\approx 8.785$ and $\beta^N\approx 6.192$. The absolute error is $|\alpha^N|\approx 2.594$, and the relative error is $\left|\frac{\alpha^N}{\alpha^N+\beta^N}\right|\approx 0.295$.

When N=100, we have $\alpha^N+\beta^N\approx 8.28318\times 10^7$ and $\beta^N\approx 8.28180\times 10^7$. The absolute error is $|\alpha^N|\approx 0.00138\times 10^7$, and the relative error is $\left|\frac{\alpha^N}{\alpha^N+\beta^N}\right|\approx 0.000166$.

This shows that this β^N is a good approximation for $\alpha^N + \beta^N$ when N is large.