${\rm COS}$ 488 - Homework 3 - Question 1

Matt Tyler

If $\alpha < \beta$, then $\frac{\alpha}{\beta} < 1$, so $\ln \frac{\alpha}{\beta} < 0$. Therefore,

$$\frac{\alpha^n}{\beta^n} = \left(\frac{\alpha}{\beta}\right)^n = e^{n\ln\frac{\alpha}{\beta}}$$

is exponentially small by the discussion in the textbook. Thus, α^n is exponentially small relative to β^n . For $\alpha=1.1$ and $\beta=1.2$, we have the following table of absolute and relative errors when $\alpha^n+\beta^n$ is approximated by β^n for n=10 and n=100:

n	absolute	relative
10	2.594	0.2952
100	13780	0.0001664