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Let B000 be the class of bit strings, with the size function defined as the number of bits. Let
B(z) be its generating function. Let Z0 denote a zero bit and Z1 a one bit.

This class can be specified as follows

B000 = E + Z0 + Z0 × Z0 + (Z1 + Z0 × Z1 + Z0 × Z0 × Z1)×B000

The symbolic then gives the following generating function equation

B(z) = 1 + z + z2 + (z + z2 + z3)B(z)

B(z) =
1 + z + z2

1− z − z2 − z3
.

Let f(z) be numerator and g(z) the denominator. Finally, we can apply the rational functions
transfer theorem from Lecture 4, produced below, to derive asymptotics.

Theorem 1 Assume that a rational GF f(z)/g(z) with f(z)/g(z) with f(z) and g(z) relatively
prime and g(0) = 0 has a unique pole 1/β of smallest modulus and that the multiplicity of β is ν.
Then,

[zn]
f(z)

g(z)
∼ Cβnnν−1 where C = ν

(−β)νf(1/β)
g(ν)(1/β)

We can easily check that f and g are relatively prime, since −1 is a root for f but not g. The
roots of g and the corresponding moduli can be computed using a calculator:

z1 ≈ 0.54369, |z1| ≈ 0.54369

z2 ≈ −0.77184− 1.11514i, |z2| ≈ 1.3562

z3 ≈ −0.77184 + 1.11514i, |z3| ≈ 1.3562

Therefore, there is a unique pole of smallest modulus 1/β ≈ 0.54369 =⇒ β ≈ 1.83928, with
multiplicity ν = 1. Therefore, C can be computed as

C = ν
(−β)νf(1/β)
g(ν)(1/β)

=
−βf(1/β)
g′(1/β)

=
−β(1 + 1/β + (1/β)2)

−1− 2(1/β)− 3(1/β)2

=
−1.83928(1 + 1/1.83928 + 1/1.839282)

−1− 2(1/1.83928)− 3(1/1.83928)2
≈ 1.13745.

The theorem thus gives

[zn]B(z) = [zn]
f(z)

g(z)
∼ 1.13745(1.83928)n.
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