5/5

COS 488 - Homework 5 - Question 2

Matt Tyler

Let a_2 , a_1 , and a_0 be the proportion of internal nodes in a random Catalan tree with N nodes that have two, one, and zero external children, respectively.

1. Let T be the class of binary trees, and for each $t \in T$, let |t| be the number of internal nodes of T, and let f(t) be the number of internal nodes of T that have two external children. Let T(z) be the OGF for the number of binary trees with N nodes, and let $\Xi(z)$ be the cumulative cost OGF for f, so

$$\Xi(z) = \sum_{t \in T} f(t) z^{|t|}.$$

Then, since there is exactly one tree in which the root node is an internal node with two external children, we have the equation

$$\begin{split} \Xi(z) &= z + \sum_{t_L \in T} \sum_{t_R \in T} (t_L + t_R) z^{|t_L| + |t_R| + 1} \\ &= z + z \left(\sum_{t_L \in T} t_L z^{|t_L|} \right) \left(\sum_{t_R \in T} z^{|t_R|} \right) + z \left(\sum_{t_L \in T} z^{|t_L|} \right) \left(\sum_{t_R \in T} t_R z^{|t_R|} \right) \\ &= z + 2z \Xi(z) T(z), \end{split}$$

so $\Xi(z) = \frac{z}{1 - 2zT(z)}$. Since $T(z) = \frac{1 - \sqrt{1 - 4z}}{2z}$, we have $\Xi(z) = \frac{z}{\sqrt{1 - 4z}}$.

Now, by the radius-of-convergence transfer theorem with $\rho = 1/4$ and $\alpha = 1/2$,

$$[z^n]\Xi(z) \sim \frac{1}{4} \frac{4^N}{\sqrt{\pi N}},$$

so since there are $\sim \frac{4^N}{N\sqrt{\pi N}}$ total trees with N internal nodes, the average number of internal nodes with two external children in a tree with N internal nodes is $\frac{N}{4}$. Therefore, $a_2 \sim \frac{1}{4}$.

- 2. In a tree with N internal nodes, there are N+1 external nodes, so we have $2a_2+a_1\sim 1$. Since $a_2\sim \frac{1}{4}$, $a_1\sim \frac{1}{2}$.
- 3. Since every internal nodes must have two, one, or zero external children, $a_2 + a_1 + a_0 \sim 1$. Since $a_2 \sim \frac{1}{4}$ and $a_1 \sim \frac{1}{2}$, $a_0 \sim \frac{1}{4}$.

1