${ m COS}$ 488 - Homework 5 - Question 4

Matt Tyler

Let A_N be the set of all pairs of involutions σ of length N and pairs (i,j) where $1 \le i < j \le N$ and $\sigma(i) > \sigma(j)$, so that $|A_N|$ is the total number of inversions in all involutions of length N. Let $A'_N \subset A_N$ be the set of all pairs $(\sigma, (i, j))$ where i and j are in the same cycle, let $A_N'' \subset A_N$ be the set of all pairs $(\sigma, (i, j))$ where either i or j is fixed by σ (though of course not both), and let $A_N''' \subset A_N$ be the set of all pairs $(\sigma,(i,j))$ where i and j are both in disjoint cycles under σ . Let B_N be the set of all involutions of length N.

Let $\phi_1: A'_N \to B_{N-2}$ be the map that sends $(\sigma, (i, j))$ to the involution formed by deleting the cycle containing i and j. Then, given any $\tau \in B_{N-2}$, there are exactly $\binom{N}{2}$ elements of A'_N that map to τ under ϕ_1 . In particular, given any $1 \le i < j \le N$, there is a unique involution σ such that $\phi_1(\sigma,(i,j)) = \tau$. Therefore, $|A_N'| = \binom{N}{2} |B_{N-2}|.$

Similarly, let $\phi_2: A_N'' \to B_{N-3}$ be the map that sends $(\sigma, (i, j))$ to the involution formed by deleting the cycles containing i and j (one of which has size 1). Then, given any $\tau \in B_{N-3}$, there are exactly $2\binom{N}{3}$ elements of A_N'' that map to τ under ϕ_2 . In particular, given any $1 \le i < j < k \le N$, there are unique involutions σ_1 and

 σ_2 such that $\phi_2(\sigma_1,(i,j)) = \phi_2(\sigma_2,(j,k)) = \tau$. Therefore, $|A_N''| = 2\binom{N}{3}|B_{N-3}|$. Finally, let $\phi_3: A_N''' \to B_{N-4}$ be the map that sends $(\sigma,(i,j))$ to the involution formed by deleting the two disjoint cycles containing i and j. Then, given any $\tau \in B_{N-4}$, there are exactly $\binom{N}{4}$ elements of A_N''' that map to τ under ϕ_3 . In particular, given any $1 \le i < j < k < l \le N$, there is a unique involution σ that maps i, j, k, and l two disjoint 2-cycles for each of the following six conditions:

1.
$$\sigma(i) = k$$
 and $\phi_3(\sigma, (i, l)) = \tau$

2.
$$\sigma(i) = k$$
 and $\phi_3(\sigma, (j, k)) = \tau$

3.
$$\sigma(i) = l$$
 and $\phi_3(\sigma, (i, j)) = \tau$

4.
$$\sigma(i) = l$$
 and $\phi_3(\sigma, (i, k)) = \tau$

5.
$$\sigma(i) = l$$
 and $\phi_3(\sigma, (i, l)) = \tau$

6.
$$\sigma(i) = l$$
 and $\phi_3(\sigma, (k, l)) = \tau$

(and these are the only six elements of $A_N^{\prime\prime\prime}$ that map to τ and have i, j, k, and l be in two disjoint 2-cycles). Therefore, $|A_N'''| = 6\binom{N}{4}|B_{N-4}|$. Since A_N is the disjoint union of A_N' , A_N'' , and A_N''' , we have that

$$|A_N| = {N \choose 2} |B_{N-2}| + 2 {N \choose 3} |B_{N-3}| + 6 {N \choose 4} |B_{N-4}|,$$

or equivalently

$$\frac{|A_N|}{N!} = \frac{|B_{N-2}|}{2(N-2)!} + \frac{|B_{N-3}|}{3(N-3)!} + \frac{|B_{N-4}|}{4(N-4)!}.$$

Therefore, if A(z) is the CGF for the total number of inversions in all involutions of length N and B(z) is the EGF for the number of involutions of length N, then we have the equation

$$A(z) = \left(\frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4}\right)B(z) = \left(\frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4}\right)e^{z + \frac{z^2}{2}}.$$

Now, let $a_N = |A_N|$ be the total number of inversions in all involutions of length N, and let $b_N = |B_N|$ be the number of involutions of length N, so that by the CGF equation or by the recurrence found above, the average number of inversions in an involution of length N is

$$\frac{a_N}{b_N} = \frac{\binom{N}{2}b_{N-2} + 2\binom{N}{3}b_{N-3} + 6\binom{N}{4}b_{n-4}}{b_N} \sim \frac{\frac{N^2}{2}f(N-2) + \frac{N^3}{3}f(N-3) + \frac{N^4}{4}f(N-4)}{f(N)}$$

where

$$f(N) = \frac{1}{\sqrt{2\sqrt{e}}} \left(\frac{N}{e}\right)^{\frac{N}{2}} e^{\sqrt{N}}.$$

Then, since the third term in the above sum dominates, we have that

$$\frac{a_N}{b_N} \sim \frac{\frac{N^4}{4} \left(\frac{N-4}{e}\right)^{\frac{N-4}{2}} e^{\sqrt{N-4}}}{\left(\frac{N}{e}\right)^{\frac{N}{2}} e^{\sqrt{N}}} \sim \frac{\frac{N^4}{4} N^{\frac{N-4}{2}} e^{-2} e^{\frac{-N+4}{2}} e^{\sqrt{N-4}}}{N^{\frac{N}{2}} e^{-\frac{N}{2}} e^{\sqrt{N}}} = \frac{N^2}{4} \left(e^{\sqrt{N-4}-\sqrt{N}}\right) \sim \frac{N^2}{4}.$$