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Observe that a partial mapping can be thought of as a digraph much like that of a mapping,
except that some vertices might not have arrows coming out of them. We can think of these
as roots of Cayley trees, and their connected components as Cayley trees. Thus, a partial
mapping is a set of cycles of Cayley trees (i.e. the components without any unmapped
nodes), together with a set of Cayley trees. Let L denote the class of partial mappings. We
have

L =SET(CYC(C))*SET(C).
Now, SET(CYC(C)) has the generating function see Slide 55), while SET(C') has

the generating function ¢“®*). Thus, we have L(z) = . Applying the Lagrange inversion
formula with f(u) = % as usual and H(u) =
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Now, (1 —u)? has generating function ano n-u", so multiplying by 2 —u gives a generating
function whose n-th coefficient is 2n — (n—1) =n+1,1e. > ;(n+1)u". Convolving with
et - "N = "Wt (whose generating function is ), WDy and taking the (N — 1)-th
coefficient gives us
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Since we were working with an EGF, the number of partial mappings of size N is N[2V]L(z) =
(N + 1)V, as desired.
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