COS 488 Week 6: Q2

2.5/5

Dylan Mavrides

March 17, 2017

Suppose that a monkey types randomly at a 32-key keyboard. What is the expected number of characters typed before the monkey hits upon the phrase THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG?

Where does the
Z<44 come from?
We have the construction (note that $K_{32} = Z_{<44}(E + Z_1K_{32} + Z_2K_{32} + ... + Z_{31}K_{32})$ True
True
True
We have the construction (note that $K_{32} = Z_{<44}(E + Z_1K_{32} + Z_2K_{32} + ... + Z_{31}K_{32})$ Please
explain thiswhere Z_{32} is the character that would continue our sequence in a way that we want
to avoid. Thus we get the OGF equationThis includes string

 $K_{32}(z) = (1 + z + \dots + z^{44})(1 + 31zK_{32}(z))$

with solution Should be 1-z⁴⁵ from your previous $K_{32}(z) = \frac{1-z^{44}}{1-32z+31z^{46}}$ step This includes strings that contain the pattern. For example if the prefix is THE and the next letter is T then an element of K_32 is HE QUICK

-2

-0.5

explicitly

Now, as is done in slide 10 in the "strings" lecture, we can go through the same etc manipulations to get that plugging in 1/32 will give us a sum over N of the number of bitstrings of length N with occurrences of the above phrase, divided by 32^N (which is the total number of strings of size N with a 32-character alphabet), and thus it gives the expected position of end of the first occurrence of the above phrase. Plugging in 1/32 we get $5.56 * 10^67$ expected typed characters.