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Let M be the class of partial mappings and € the class of rooted Cayley trees.

We can think of a partial mapping as a whole mapping with an additional null node, to which
all elements with undefined image point. Furthermore, null points to itself and is practically a
singleton cycle of trees (a.k.a. a single tree). Symbolically, this translates to

M =SET(CYCc(C)+C€), €=2Z x SET(C),

where the addition C corresponds to the tree rooted at the null node.
Translating to generating functions, we have

M(z) = exp(ln(l_;c(z) + C(2))
eC(z)

MO =1"er

C(z) = z- %@

Since there is no explicit form for C'(z) we will use the Lagrange-Biirmann inversion theorem
to extract coefficients. In this case, g(z) = C(2) and f(u) = g~'(z) = X, and we can check that
indeed

flole) = 2 = -
f0) =5 =0

F(0) = 16_00:17&0.

Setting H (u) = %, the theorem states
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Using the binomial convolution on ( )2 and "1, we have

n _1 - (n;1> k—1 2—u n—k u(n+1
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Using partial fractions, we can extract coefficients from the left term:
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=1+((k—-1)+1)=k+1,

while the coefficients of the right term follow from Taylor expansion:
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Plugging these back into the binomial convolution, we have
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Note that to go form the second line to the third line, we used the fact that n + 1 and n are
asymptotically equivalent. It follows that the number of partial mappings of size n is n! times the
nth coefficient, i.e. (n + 1)".



Combinatorially, we can interpret this number as follows. Each of the n elements in the domain
has n + 1 options for its image: Either one of the n elements, or undefined. The total number of
partial mappings over n elements is then (n + 1)” by product rule.





