
Note II.11: ​Balls switching chambers: the Ehrenfest model 
 
Since all balls begin in ​A​, then we know that after ​n​ evolutions, any ball that has, b , ... bb1  2  N  
moved an odd number of times is in ​B​ and that any ball that has moved an even number of times 
is still in or back in ​A​. 
 
Let us imagine a string such that each character in the string at index ​i ​denotes which ball has 
moved at instant ​i​.  So, in such a string, we can see that if a character appears zero or an even 
number of times, then its corresponding ball is in ​A​, and if it appears an odd number of times, 
then its corresponding ball is in ​B​.  This allows us to construct all words (“balls in ​A​”) from an 
N​-letter alphabet where all letters appear an even number of times as 
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We can do something similar for balls ending up in ​B​, which are modeled as words where letters 
appears an odd number of times. 
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We can get the first equation we want to solve for with these two expressions.  Assume ​l​ balls 
end up in ​A​, and balls end up in ​B​, or some ​l​ letters in the word appear an even number of N − l  
times while the rest show up an odd number of times.  This looks like the binomial distribution 
thing: 
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At time 2​n​, the total number of possible evolutions is ​N​2​n​ and the probability that all the balls are 
in ​A ​is 
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