Analytic Combinatorics Note II.11

Eric Neyman 4/4/2017

5/5

Let $E_{N,n,\ell}$ be the class of evolutions of N balls b_1, \ldots, b_n ending with ℓ balls in A, with n total moves. Let $W_{N,n,\ell}$ be the class of words with N labeled sets S_1, \ldots, S_N having n objects j_1, \ldots, j_n total, with ℓ of the sets having an even number of objects. Consider the map $\phi: E_{N,n,\ell} \to W_{N,n,\ell}$ sending an evolution that moves ball b_{i_t} $(1 \le i_t \le N)$ at time $t - \frac{1}{2}$ $(1 \le t \le n)$ to the word where object j_t belongs to the set S_{i_t} . (That is, S_k contains all times when ball b_k is moved (minus $\frac{1}{2}$).) This map's image is indeed inside $W_{N,n,\ell}$, since a ball ends up back in A if and only if it is moved an even number of times, i.e. the corresponding urn has an even number of objects. Consider the map $\phi^{-1}: W_{N,n,\ell} \to E_{N,n,\ell}$ sending a word to an evolution such that if j_t belongs to S_k , then ball b_k moves at time $t - \frac{1}{2}$. This map's image is inside $E_{N,n,\ell}$, since the bins with an even number of objects correspond to the balls that end up back in A. It is clear that ϕ and ϕ^{-1} are in fact inverse maps, which proves that $E_{N,n,\ell}$ is in bijection with $W_{N,n,\ell}$.

Consider the class of N-words (i.e. words with N sets) where the first ℓ sets contain an even number of elements and the last $N - \ell$ sets contain an odd number of elements. This class can be described as

$$SEQ_{\ell}(SET_{\text{even}}(Z)) \star SEQ_{N-\ell}(SET_{\text{odd}}(Z)),$$

which has generating function

$$\left(\frac{e^z + e^{-z}}{2}\right)^\ell \times \left(\frac{e^z - e^{-z}}{2}\right)^\ell.$$

But any of the N sets can be even, not just the first ℓ , so we must multiply by $\binom{N}{\ell}$, giving us the generating function

$$\binom{N}{\ell} (\cosh z)^{\ell} (\sinh z)^{N-\ell},$$

which by our bijection above is equal to $E^{|\ell|}(z)$. In particular, plugging in $\ell = N$ gives

$$E^{|N|}(z) = (\cosh z)^N = 2^{-N} (e^z + e^{-z})^N = 2^{-N} \sum_{k=0}^N \binom{N}{k} e^{z(N-k)} e^{-zk} = 2^{-N} \sum_{k=0}^N N\binom{N}{k} e^{z(N-2k)}$$
$$= 2^{-N} \sum_{k=0}^N \binom{N}{k} \sum_{n \ge 0} \frac{(N-2k)^n}{n!} z^n = \sum_{n \ge 0} 2^{-N} \sum_{k=0}^N \binom{N}{k} \frac{(N-2k)^n}{n!} z^n.$$

Thus, the 2n-th coefficient of this generating function is

$$2^{-N} \sum_{k=0}^{N} \binom{N}{k} \frac{(N-2k)^{2n}}{(2n)!}.$$

We multiply by (2n)! since this is an EGF; this gives us the total number of ways that urn A ca be full at time 2n. Dividing by the total number of evolutions of length 2n, i.e. N^{2n} , gives the probability that urn A is full at time 2n, i.e.

$$\frac{1}{2^N N^{2n}} \sum_{k=0}^N \binom{N}{k} (N-2k)^{2n},$$

as desired.