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AC Note I.23 Alice, Bob, and coding bounds. Alice wants to communicate n bits of information
to Bob over a channel that transmits 0,1-bits but is such that any occurrence of 11 terminates the
transmission. Thus, she can only send on the channel an encoded version of her message (where
the code is of some length ` ≥ n) that does not contain the pattern 11.

Here is a first coding scheme: given the message m = m1m2 · · ·mn, where mj ∈ {0, 1}, apply
the substitution: 0 7→ 00 and 1 7→ 10; terminate the transmission by sending 11. This scheme has
length ` = 2n+O(1), and we say that its rate is 2. Can one design codes with better rates? with
rates arbitrarily close to 1, asymptotically?

Let C be the class of allowed code words. For words of length n, a code of length L ≡ L(n)
is achievable only if there exists a one-to-one mapping from {0, 1}n into ∪Lj=0Cj , i.e., only if 2n ≤∑L

j=0Cj . Find the OGF of C and use it to show that

L(n) ≥ λn+O(1), where λ =
1

log2 ϕ

.
= 1.440420, ϕ =

1 +
√

5

2
.

Thus no code can achieve a better rate than 1.44; i.e., a loss of at least 44% is unavoidable.

Solution. A better coding scheme is given by 0 7→ 0 and 1 7→ 10. It’s clear by inspection that
this coding scheme and its inverse are well-defined. For an arbitrary word of length n, the expected
length of the encoded word is 1.5n+O(1), so the code has expected rate 1.5. However, the length
of the encoded word can vary anywhere from n (if the word is all 0s) to 2n (if the word is all 1s).

We can’t design codes with rates arbitrarily close to 1, as we will now prove. C is the class of
bitstrings with no occurrence of 11. By symmetry, this class obviously has the same generating
function as the class of bitstrings with no occurrence of 00, which we computed in part 1 of the
course (see AofA p. 227). The OGF of C is thus

C(z) =
1 + z

1− z − z2
= F (z) + zF (z),

where F (z) is the OGF of the Fibonacci numbers. The coefficients Cj are thus

Cj = Fj + Fj+1 = Fj+2.

It is well-known (and easily verified by induction) that
∑L

j=0 Fj = Fj+2− 1. Summing the Cj from
j = 0 to L, we thus have

L∑
j=0

Cj =
L∑

j=0

Fj+2 = FL+4 − 1− F0 − F1 = FL+4 − 2.

Since Fj ∼ ϕj
√
5

as j →∞, this means that

L∑
j=0

Cj = Fj+4 − 2 ∼ ϕL+4

√
5
− 2 ∼ ϕL+4

√
5
.
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We now solve for L as a function of n:

2n ≤
L∑

j=0

Cj ∼
ϕL+4

√
5

⇒ n ≤ log2(ϕ
L) + log2

(
ϕ4

√
5

)
= L log2(ϕ) +O(1)

⇒ n

log2(ϕ)
+O(1) ≤ L,

as we wanted to show.




