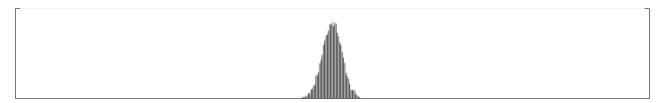

AC Program II.1 Write a program to simulate the Ehrenfest model, and use it to plot the distribution of the number of balls in chamber A after 10^3 , 10^4 , and 10^5 steps when starting with 10^3 balls in chamber A and none in chamber B.

Solution. My Java code is submitted under "Additional Files" as Ehrenfest.java.


The command "java Ehrenfest k t" simulaes t trials of the Ehrenfest model with N=1000 balls and 10^k steps, and plots a histogram of the distribution of the number of balls in chamber A at the end of each trial. The resulting histogram has its x-axis ranging from 0 to N, and the heights of the bars show the relative likelihood of each outcome.

As one can see from the images below, when the number of steps is large (here I used t = 10000), the distribution resembles a normal distribution with mean N/2 = 500. This means that after a large number of steps, about half the balls will be in chamber A and about half will be in chamber B.

> java Ehrenfest 4 10000

> java Ehrenfest 5 10000

> java Ehrenfest 6 10000

