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We work in full generality, i.e. in terms of nodes of outdegree k. A Cayley tree is a root
together with a set of Cayley trees. The set either has cardinality k — in which case the
root has outdegree k — or a cardinality other than k — in which case the root does not have
outdegree k. The outdegree of the nodes of the sub-trees is not affected by being attached
to the root. Thus, if T (z, u) is the generating function for Cayley trees with cost equal to
the number of nodes with outdegree k (with k implicit), we have the generating function
equation
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This is because eT (z,u) is the expression for a set of trees, but we have to subtract the term
for sets of k sub-trees, and at it back in with an extra u (since the root has outdegree k so
the exponent of u should increase).

Observe that if f(y) = y

ey+(u−1) y
k

k!

, then

f(T (z, u)) =
T (z, u)

eT (z,u) + (u− 1)T (z,u)k

k!

= z.

Applying the Lagrange inversion formula, we have
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Now we differentiate with respect to u. Using Tu(z, u) to denote the partial of T (z, u) with
respect to u, we have
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Plugging in u = 1, we have
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Recall that this is an EGF, so we multiply by n! to get the total number of vertices of
outdegree k over all Cayley trees with n nodes. Now, there are nn−1 total Cayley trees with
n nodes (this was proved in an earlier lecture), so to obtain the average number of vertices
with outdegree k in a Cayley tree with n nodes, we divide by nn−1. The average number of
vertices with outdegree k is thus
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as desired.




