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COS 488 Week 7: Q1

Dylan Mavrides

April 14, 2017

We begin with the symbolic representation. Note that we want Cayley trees, but then
we remove ones with indegree k (the question says outdegree, but since outdegree
is always 1, I assume this is a typo), then add them back in with the cost variable
attached.
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We now apply Lagrange inversion with ¢ = T'(z,u) and f(y) =
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that we thus have f(g(y)) = z, since we simply solved our above equation for z to
obtain this set of f and g.) We now see that:
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T () = Sl —— = e + P

Now in the following steps, we take the partial derivative with respect to u, plug in
1 for u, then find the coefficient of y”~! and thus 2", then multiply by n! since it’s
an EGF, and then finally divide by the total number of Cayley trees n"~! to get the
mean number of nodes with indegree k. The equations proceed as follows:
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And thus to get the mean:
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We now apply our asymptotic approximation for combinations (from the AofA web-
site):
n—1DFn—-1)"*1 m-1D"1'n @QA-1/n)"n
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k! nn—2 =l kT 1—1/n k!

and in the limit case, the first term goes to 1/e (note that the denominator clearly
goes to 1, and the numerator goes to 1/e. This is a well-known identity, but can easily
be shown by showing that (1 —1/n)"(1 + 1/n)" ~ 1 because of how the expansion
works out, or you can substitute with -n. Anyway, we then get:
n 1
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as desired.





