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COS 488 - Homework & - Note II1.17
Matt Tyler

We will prove that the mean number of nodes with indegree k in a random Cayley tree of size n is asymptotic
to 7. Since a leaf is the same as a node with indegree 0, it will follow immediately that the mean number
of leaves in a random Cayley tree of size n is 57 = 2.

Let Ty(z,u) denote the bivariate EGF for which [ "Il [2" Tk (2, u) is the number of Cayley trees of size
n with m nodes with indegree k. Since a Cayley tree consists of either a root vertex connected to a set
of | Cayley trees for some [ # k or a root vertex connected to a set k Cayley trees, we have the following
construction:

Tk =7 x SET¢k(Tk) + Z x SETk(Tk)
This gives the bivariate EGF equation
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so if f(y) = #ﬁl)u‘/k" then f(Tk(z,u)) = z. Since f(0) = 0 and f'(0) = 1 # 0, we can use Lagrange
inversion o find that
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Therefore (for all sufficiently large k),
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Since there are n~! Cayley trees of size n, the average number of nodes with indegree k in a random Cayley
tree is
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Since (”kl) is asymptotic to ("k!l) and (1 - %)n is asymptotic to %, this average is asymptotic to
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as desired.
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