David Luo

COS 488 5/5

Compute the percentage of permutations having no singleton or doubleton cycles and compare
with the asymptotic estimate from analytic combinatorics, for N =10 and N = 20.

Our lecture slides show that the number of permutations of length N without any cycles of length
M or less is roughly N!/eflu, so in our case the percentage of permutations having no singleton
or doubleton cycles should be 100(e*2), or 22.3%. Using Python 2.7 and a sample size of one
million, I found that the proportion of size 10 and 20 permutations with no singleton or
doubleton cycles was indeed right around 22.3%.

My code is shown below, along with the output.

#!/usr/bin/python
import numpy, math

constants
sampleSize = 1000000
N1 = 10

N2 = 20

returns the inverse of a permutation p
def inverse (p):
qg = [0] * len(p)
for i1, v in enumerate(p):
alv] = 1
return g

returns true if list p has no singleton or doubleton cycles, false if so
def hasNoSDCycles (p) :
g = inverse (p)
for i in xrange(len(p)):
if (g[i] == pli]):
return False
return True

Victor
Typewritten Text
5/5

calculate number of permutations without singleton or doubleton cycles
def main():

N =10
countl = 0
for 1 in xrange (sampleSize):
p = numpy.random.permutation (N1).tolist ()
if (hasNoSDCycles(p)):
countl += 1
print countl
N = 20
count2 = 0
for i in xrange (sampleSize):
p = numpy.random.permutation (N2).tolist ()
if (hasNoSDCycles (p)) :
count2 += 1
print count2
main ()

Output below:

>python IV.1.python
222987

223212

