
David Luo
COS 488

Compute the percentage of permutations having no singleton or doubleton cycles and compare
with the asymptotic estimate from analytic combinatorics, for​ N​ = 10 and ​N ​= 20.

Our lecture slides show that the number of permutations of length ​N ​without any cycles of length
M ​or less is roughly so in our case the percentage of permutations having no singleton!/e ,N HM
or doubleton cycles should be , or 22.3%. Using Python 2.7 and a sample size of one00(e)1 −H2
million, I found that the proportion of size 10 and 20 permutations with no singleton or
doubleton cycles was indeed right around 22.3%.

My code is shown below, along with the output.

#!/usr/bin/python
import numpy, math

constants
sampleSize = 1000000
N1 = 10
N2 = 20

returns the inverse of a permutation p
def inverse(p):

q = [0] * len(p)
for i, v in enumerate(p):

q[v] = i
return q

returns true if list p has no singleton or doubleton cycles, false if so
def hasNoSDCycles(p):

q = inverse(p)
for i in xrange(len(p)):

if (q[i] == p[i]):
return False

return True

Victor
Typewritten Text
5/5

calculate number of permutations without singleton or doubleton cycles
def main():

N = 10
count1 = 0
for i in xrange(sampleSize):

p = numpy.random.permutation(N1).tolist()
if (hasNoSDCycles(p)):

count1 += 1
print count1
N = 20
count2 = 0
for i in xrange(sampleSize):

p = numpy.random.permutation(N2).tolist()
if (hasNoSDCycles(p)):

count2 += 1
print count2

main()

Output below:
>python IV.1.python
222987
223212

