COS 488 Spring 2017

Homework 9: Question and Answer

Maryam Bahrani (mbahrani)

Complex Differentiation and Integration Warm-up

1. Verify that 4¢* = ze* for z € C.

2. Evaluate following integral when C' is a circle of radius 1, 3, or 5 centered at the origin:
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Answer

1. Let z = a + i¢b. Then

et = el

ettt — gt (ezbt) + aeatezbt‘

dz dt
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Note that
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%(e )= o (cos(bt) + isin(bt))
= —bsin(bt) + ibcos(bt)
= ib(cos(bt) + isin(bt))
= ibe™.

Plugging back into the original equation, we have
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2. Note that the denominator of the integrand can be factored into (z+4)(z —2), so the function

has singularities at z = 2 and z = —4.

Let C; be a circle of radius 1 circled at the origin. Since C; does not contain any of the
singularities of the integrand, the integrand is analytic inside C';. By Cauchy’s theorem,
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Next, let C'3 be a circle of radius 3 circled at the origin, and note that C'3 contains exactly one
singularity of the integrand at z = 2. We can rewrite the integral as
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where the function in the numerator is analytic in C's and Cauchy’s integral formula applies
directly:
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Finally, let C5 be a circle of radius 5 circled at the origin, and note that C5 contains both

singularities of the integrand at z = 2 and z = —4. Using the residue theorem, we have
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