
COS 488 - Homework 9 - Note IV.28

Matt Tyler

The ”supernecklaces” of the third type of sizes 1, 2, 3, and 4 are drawn below (for size 4, I drew each possible
shape, and then listed the distinguishable ways to fill that shape):
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Let S be the combinatorial class of ”supernecklaces” of the third type. Since a ”supernecklace” of the third
type is a labelled cycle of cycles, we have the construction

S = CY C(CY C(Z)),

which gives the EGF
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Then,
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which is meromorphic at all points ∣z∣ ≤ 2 and analytic at 0 and at all points ∣z∣ = 2. Since 1 − e−1 is the
unique closest pole to the origin of S′(z), and this pole has order 1, we have by the transfer theorem shown

in class with S(z) = f(z)
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Therefore,
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as desired.
The number of ”supernecklaces” of the third type of size n is therefore
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